道路事故已成为全世界的八项主要死亡原因。这些事故中有很多是由于驾驶员的注意力不集中或由于疲劳而缺乏专注。各种因素导致驾驶员的疲劳。本文考虑了表现出驾驶员疲劳的所有可测量数据,即在车辆可测量数据中表现出的疲劳以及驾驶员的物理和生理数据。这三个主要因素中的每个因素都进一步细分为较小的细节。例如,车辆的数据由从方向盘的角度,偏航角,车道上的位置以及移动时车辆的速度和加速度获得的值组成。驾驶员疲劳检测的本体论知识和规则将集成到智能系统中,以便在检测到危险疲劳水平的第一个迹象时,将警告通知发送给驾驶员。这项工作旨在为安全的道路驾驶做出贡献。
translated by 谷歌翻译
当RIS反射系数得到精确调整时,在可重新配置的智能表面(RISS)中的被动横向形成可以可行,有效的通信方式。在本文中,我们提出了一个框架,以从Terahertz(THZ)通信系统中的时间序列预测的角度进行深入学习,以跟踪RIS反射系数。所提出的框架对类似的学习驱动的框架实现了两步的增强。具体而言,在第一步中,我们训练液态机器(LSM)在先前的时间步长(称为时间序列序列)上跟踪历史RIS反射系数,并预测其即将到来的时间步骤。我们还通过Xavier初始化技术微调了训练的LSM,以降低预测方差,从而导致更高的预测准确性。在第二步中,我们使用集合学习技术,该技术利用多个LSM的预测能力来最大程度地减少预测差异并提高第一步的精度。从数值上证明,在第一步中,采用Xavier初始化技术来微调LSM最多的LSM预测差异最多可使LSM降低26%,并且在现有的对应物中提高了46%可实现的光谱效率(SE),当部署11x11的RIS时。在第二步中,在训练单个LSM的相同计算复杂性下,具有多个LSM的集合学习降低了单个LSM的预测差异高达66%,并最多可提高可实现的SE系统。
translated by 谷歌翻译
车辆到基础设施(V2I)通信对于增强自动驾驶汽车(AV)的可靠性至关重要。但是,道路交通和AVS无线连接的不确定性会严重损害及时的决策。因此,至关重要的是,同时优化AVS的网络选择和驱动政策,以最大程度地减少道路碰撞,同时最大化通信数据速率。在本文中,我们开发了一个增强学习(RL)框架,以表征有效的网络选择和自主驾驶策略在传统的Sub-6GHz Spectrum和Terahertz(THZ)频率上运行的多波段车辆网络(VNET)中。所提出的框架旨在(i)通过自动驾驶的角度控制车辆的运动动力学(即速度和加速度)来最大化交通流量,并最大程度地减少冲突,以及(ii)通过共同控制车辆的交接,并最大程度地减少数据速率从电信的角度来看运动动力学和网络选择。我们将这个问题作为马尔可夫决策过程(MDP)提出,并开发了基于Q的深度学习解决方案,以优化给定AV状态的加速度,减速,车道变速器和AV基准站分配等动作。 AV的状态是根据AV的速度和通信渠道状态定义的。数值结果表明了与车辆运动动力学,交接和通信数据速率相互依赖性有关的有趣见解。拟议的政策使AVS能够采用具有改善连接性的安全驾驶行为。
translated by 谷歌翻译
在本文中,我们得出了一种新方法来确定数据集的共享特征,通过采用联合非负矩阵分解并分析所得因素化。我们的方法使用两个数据集矩阵的联合分解$ x_1,x_2 $中的非负矩阵$ x_1 = as_1 = as_1,x_2 = as_2 $得出一个相似的度量,以确定$ x_1的共享基础的良好,x_1,x_2 $近似于每个dataset。我们还提出了基于此方法和学习分解的数据集距离度量。我们的方法能够成功地在图像和文本数据集中成功身份差异。潜在的应用包括分类,检测窃或其他操纵以及数据集之间的学习关系。
translated by 谷歌翻译